O.P.Code:	16CS521
------------------	---------

SIDDHARTH INSTITUTE OF ENGINEERING &	TECHNOLOGY:: PUTTUR
(ATTOMONIS)	

H.T.No.

(AUTONOMOUS) B.Tech. III Year I Semester Supplementary Examinations June-2025 DESIGN AND ANALYSIS OF ALGORITHMS

(Common to CSIT & CSE)

R16

Time: 3 Hours

(Answer all Five Units $5 \times 12 = 60$ Marks)

Max. Marks: 60

UNIT-I

1 Describe about the performance analysis in detail with Example. CO1 L2 12	2 M
---	------------

OR

2 Define Disjoint sets. Explain different types of disjoint sets operations with CO1 L2 12M examples.

UNIT-II

3 Write about Binary Search algorithm with Example and find Time CO2 L1 12M complexity.

OR

4	a Explain the general Greedy method with an algorithm.	CO2	L2	6M	
	b Explain the general divide-and-conquer method with an algorithm.	CO2	L2	6M	
	UNIT-III				
5	Explain travelling sales man problem with an example by using dynamic	CO3	L2	12M	
	programming.				
	OR				
6	Describe in detail 8-queens problem using back tracking.	CO3	L5	12M	
	UNIT-IV				
7	a Explain the properties of LC-search.	CO4	L2	6M	
	b Explain control abstraction of LC-branch and bound.	CO4	L2	6M	
	OR				
8	Apply the branch-and- bound technique in solving the travelling salesman	CO4	L3	12M	
	problem.				
	UNIT-V				
9	Distinguish between deterministic and non-deterministic algorithms.	CO5	L4	12M	
	OR				
10	State and explain cook's theorem.	CO5	L5	12M	

10 State and explain cook's theorem.

Q.P.Code: 16CS531 R16 H.T.No.		(0)
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: F	ԱՐՐՐԱ Մ	R
(AUTONOMOUS)	0110	
B.Tech. III Year I Semester Supplementary Examinations June DATA WAREHOUSING AND DATA MINING	2025	
(Computer Science & Information Technology)		
Time 2 have	Max. M	farks: 60
(Answer all Five Units $5 \times 12 = 60$ Marks)		
UNIT-I		
1 a What is KDD? Explain about data mining as a step in the process o	f L1	8M
knowledge discovery.	1/1	OW
b How to classify data mining systems? Discuss.OR	L2	4M
2 Explain in detail about Data mining functionalities.	то	103.5
UNIT-II	L2	12M
3 a What are steps in designing the data warehouse? Explain.	L1	6M
b Compare OLTP and OLAP.	L1 L2	6M
OR		0101
4 a Briefly explain the German super market EDEKA's Data warehouse.	L2	6 M
b Write about case study of Data Warehousing in the Tamilnadu Government.	L2	6 M
UNIT-III		
5 What are the various Constraints in Constraint based Association rule mining? Explain.	L1	12M
OR		
6 Explain about the Mining Multilevel Association rules with example.	L2	12M
7 a What is Bayes theorem? Explain.	T 1	
b Discuss about Naïve Bayesian Classification.	L1	6M
OR	L2	6M
8 a What is prediction? Explain about Linear regression method.	L1	6M
b Discuss about Accuracy and Error measures.	L1 L2	6M
UNIT-V		0141
9 a Differentiate between AGNES and DIANA algorithms.	L2	6M
b What is outlier detection? Explain distance based outlier detection.	L1	6M
OR		VIII
10 Define Clustering? Explain about Types of Data in Cluster Analysis?	L1	12M
*** END ***		

*** END ***

.

13.

11 A	· 0	.P	.Code: 16C8527 R16 H.T.No.			$\square \bigcirc$		
C.C. Jor	Ti	m	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOG (AUTONOMOUS) B.Tech. III Year I Semester Supplementary Examinations Jur COMPUTER NETWORKS (Computer Science & Information Technology) e: 3 Hours (Answer all Five Units 5 x 12 = 60 Marks) UNIT-1					
	1	я	Compare Connection oriented and connectionless service.	001	TO			
	1		• Explain the functions and protocols and services of each layer.	CO1	L3	6M		
		N.		CO1	L5	6M		
	2		OR Discuss various types of networks topologies in computer network. UNIT-II	CO1	L6	12M		
	3		Explain the operation of the bit-oriented protocol HDLC with the required frames.	CO2	L2	12M		
	4		OR Explain MAC sub layer protocol and frame structure of IEEE 802.11.	CO2	L5	12M		
	5		Explain about the Routing algorithms.	CO3	L2	12M		
	6		OR Explain the function of ARP & RARP. UNIT-IV	CO3	L5	12M		
	7	a	Explain the duties of transport layer.	CO 4	L2	6M		
		b	Write short notes on performance issues of transport layer.	CO 4	L1	6M		
			OR					
	8		Explain the operation of TCP with neat sketch.	CO 4	L5	12M		
			UNIT-V					
	9		Explain how security is provided in interact operations in detail.	CO5	L2	12 <u>M</u>		
			OR					
	10	a	Discuss the features of HTTP and also discuss how HTTP works.	CO5	L6	6M		
		b	Illustrate about Application layer and its services in detail.	CO5	L2	6M		
			*** END ***					

£

6	P.Code:16CS519 R16 H.T.No.		
	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PU	J TTU I	R
	(AUTONOMOUS) B Tech IV Year I Somester Supplementary Exeminations, Iwas 2	005	
	B.Tech. IV Year I Semester Supplementary Examinations June-2 WEB TECHNOLOGIES	2025	
	(Computer Science & Information Technology)		
Time	21	lax. M	larks: 60
	(Answer all Five Units $5 \times 12 = 60$ Marks)		
	UNIT-I		
1	a What is html? Explain the various html tags to develop web pages.	L1	6M
	b Define frame. Create a HTML page that displays multiple frames in a	L6	6M
	window.	20	UIVE
	OR		
2	a Explain about Creating Editable Content.	L2	6M
	b Illustrate the structure of HTML5 document with neat example.	L2	6M
	UNIT-II		
3	List and explain in detail the various selector strings with example.	L4	12M
	OR		
4	a Write programs to illustrate Popup Boxes in JavaScript.	L1	6M
	b What is JQuery? Explain JQuery Selectors?	L1	6M
_	UNIT-III		
5	a Write a program to find average of first ten natural numbers using for	L1	6M
	loop. h. Write a note on various library functions available in DUD		<i>(</i>) <i>-</i>
	b Write a note on various library functions available in PHP. OR	L1	6M
6	What is RDBMS? How to create a connection between PHP and My SQL?	L5	1034
		13	12M
7	a Write the program to print the hello world.	L1	<u>CM</u>
	b List different conditional statements in python with appropriate examples.	LI L4	6M 6M
	OR	LŦ	UIVI
8	How to create a module and use it in a python program? Explain with an	L1	12M
	example.		
	UNIT-V		
9	a What is a Document Type Definition (DTD)?	L1	6M
	b How XML is changing the Web?	L1	6M
	OR		
10	What is AJAX? When can we use AJAX? Explain with an example.	L1	12M

2

193

(M) (1													rk
J.	6).P.	Code: 16IT603	R16	H.T.No.								
3	-				U								
V			SIDDHARTH INSTITUT			ECH	NC)L()GY		PUT	TUF	R
			B.Tech. III Year I Sen	nester Supple			ati	on	s Ju	ne	-20	25	
				THON & R P ter Science & I			ogy	7)					
	Time	e: 3	hours				- 0,				Ma	x. M	arks: 60
			(Ans	wer all Five Ur	hits 5 x 12 = 60) Mar	ks))					
				U	NIT-I								
	1		Explain in detail about ke		1							L1	12M
	2	9	Justify the need of pythor		OR							T 4	<u>A</u>
	2		Explain the applications of									L4 L2	6M 6M
					VIT-II								0111
	3		Explain about Lists and it									L2	12M
			*		OR								
	4		Explain about calling fun	ctions with suit	able example.							L2	12M
				UN	IT-III								
	5	a	Discuss about 'try' except	t block.								L3	6M
		b	Discuss about user define	d Exceptions.								L3	6 M
					OR								
	6	a b	Differentiate between err	_								L3	6M
		U	Write about self-argumer		IT-IV							L2	6M
	7	a	Write installation steps of		11-1 1							L3	6M
	,		Describe about command						21			L3 L3	6M
					DR								
	8		Explain how to save the d	ata in R.								L2	12M
				UN	IT-V								
	9		Explain in detail about De	scriptive Analy	vsis.						_	L2	12M
					DR								
	10		Write briefly about Line C									L2	6M
		D	Describe about Bar Charts	•]	L 3	6M

*** END ***

2

20

R16

|--|

		SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY	:: PUT	TUR	
		(AUTONOMOUS)			
		B.Tech. IV Year I Semester Supplementary Examinations June	e-2025		
		INTERNETWORKING WITH TCP/IP			
		(Computer Science & Information Technology)			60
Tim	le:	3 Hours	max.	Mari	cs: 60
		(Answer all Five Units $5 \times 12 = 60$ Marks)			
		UNIT-I			
1	a	Compare between OSI and TCP/IP protocol suite.	CO1	L4	6M
	b	Discuss about Logical and Physical addresses.	CO1	L2	6M
		OR			
2	а	Illustrate the significance of sub-network mask.	CO1	L2	6M
-		Explain how classless addressing address the problem of address	CO1	L3	6M
	N	depletion.			
		UNIT-II			
			COA	т.а	1014
3		Discuss in detail about ARP Protocol.	CO2	L2	12M
		OR			
4	a	Illustrate the Packet Format of ICMP.	CO2	L2	6M
	b	Explain in detail about Debugging tools.	CO2	L3	6M
		UNIT-III			
5	a	Describe the types of links defined in OSPF.	CO3	L2	6M
	b	Discuss in detail about BGP.	CO3	L2	6M
		OR			
6	a	With an example explain distance vector routing algorithm.	CO3	L3	6M
Ũ		Explain in detail about path vector routing.	CO3	L3	6M
	Ň	UNIT-IV			
7		What is UDP? Explain UDP Packet in detail.	CO 4	L3	12M
7		-	004	13	
0		OR Discuss TCD factures in detail	CO 4	L2	6M
8		Discuss TCP features in detail.			6M
	b	Explain connection establishment in TCP using three-way handshaking.	CO 4	L3	OIVI
		UNIT-V			
9	a	What is Error control in TCP? Explain.	CO5	L2	6M
	b	Discuss Congestion control mechanisms.	CO5	L3	6M
		OR			
10	a	Explain ICMPV6 error-reporting messages.	CO5	L3	6M
		Discuss error messages in ICMPV6 and compare and contrast them with	CO5	L2	6M
		the error messages in ICMPV4.			
		*** END ***			

Q.P.Code: 16IT611	1

R16	
-----	--

						$\widehat{(\mathcal{A})}$
North Contraction	Q.	P.0	Code: 16IT611 R16 H.T.No.			Ϊ
50			SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOG	Y:: PU7	TUR	
35			(AUTONOMOUS)			
2			B.Tech IV Year I Semester (R16) Supplementary Examinations	June-20	25	
			INFORMATION SECURITY (Computer Science & Information Technology)			
	Tir	ne	: 3 Hours	Max.	Mar	ks: 60
			(Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I			A.S. 00
	1	a	Discuss in detail about various types of Security attacks with neat diagrams	CO 1	L6	6M
		b	What is symmetric key cryptography? Discuss its advantages and limitations?	CO1	L6	6M
			OR			
	2		Explain the encryption and decryption of AES With neat Diagram.	CO1	L2	12M
	3		Explain RSA algorithm with suitable examples.	CO2	L2	12M
			OR			
	4	a	What are the requirements and applications of public key cryptography?	CO2	L1	6M
		D	Discuss about Euler's theorem.	CO2	L6	6M
	5	•	List out applications of armsterious lie la List			
	3	a h	List out applications of cryptographic hash functions. Explain the characteristics are needed in secure hash function?	CO3	L1	6M
		U	OR	CO3	L2	6M
	6	a	Compare different types of SHA algorithms with parameters.	CO3	L2	6M
		b	Discuss about the objectives of HMAC and its security features.	CO3	L2	6M
			UNIT-IV	005		UIVI
	7		What is secret key distribution? Explain secret key distribution with confidentiality and authentication.	CO 4	L1	12M
			OR		2	
	8	a	What is Public Key certificate? Explain its usage with X.509 certificates.	CO4	L1	6M
		b	What is Radix 64 format? What is its use in PGP?	CO4	L3	6M
			UNIT-V			
	9		What is the use of SSL protocol? Explain SSL record protocol operation with SSL record format.	CO5	L1	12M
			OR			
]	10	a L	What are the different types of viruses? How do they get into the systems?	CO5	L1	6M
		D	Explain Intrusion detection in detail. *** END ***	CO 5	L2	6M
			END and			

O.P.Code: 16EC422 R16 H.T.No.		
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PU (AUTONOMOUS)		
B.Tech IV Year I Semester Supplementary Examinations June-2025 DIGITAL SIGNAL PROCESSING		
(Electrical & Electronics Engineering)		
	ax. Ma	urks: 60
(Answer all Five Units $5 \times 12 = 60$ Marks)		
UNIT-I		
1 a Summarize the power signal and Energy signal.	L2	6M
b Describe the relation between i) DFT to Z- transform ii) DFT to Fourier Series.	: L2	6M
2 State and prove following properties of DFT	- L5	12M
i) Circular shifting ii) Time reversal iii) Complex conjugate	- 12	1211
iv) Linearity v) Circular convolution		
3 a Explain divide and conquer approach to computation of the DFT.	L2	6M
b Construct the decimation in time FFT algorithm with butterfly diagram. OR	L3	6M
 4 a Determine 8-point DFT of the sequence x(n)= {1,2,1,2,1,2,2,1} using radix-2 DIF-FFT Algorithm. 	L5	8M
b Discuss Quantization errors in the direct computation of DFT.	L2	4 M
5 Determine the realization for IIR system with following difference equation	L3	12M
y(n) = (3/4) y(n-1) - (1/8) y(n-2) + x(n) + (1/3) x(n-1) (i) Direct form-I (ii) Direct form-II		
OR		
6 a Explain briefly about Signal flow graph & transposed structures with an example.	L2	6M
b Determine the direct form realization for the following linear phase filters	L3	6M
h(n) = [1,2,-4,2,3,1,2].		
UNIT-IV	TA	(3.5
 a Express the frequency transformation in analog domain. b Design a high pass filter for the given specifications αp=3dB; αs=15dB; 	L2 L3	6M 6M
$\Omega p=1000 rad/sec$ and $\Omega s=500 rad/sec$.	13	UIVI
OR		
a Explain the design steps of a digital filter using Impulse Invariance method.	L2	5M
b For the analog transfer function $H(s)=2/(s+1)$ (s+2) determine $H(s)$ using	L3	6M
impulse invariance method. Assume T=1 sec.		
9 a Describe the design of symmetric and asymmetric FIR filters.	L2	6M
b Compare features of different windowing functions.	$\mathbf{L}\mathbf{L}$	6M
ÖR		JITE.
Design a filter with $H_d(e^{j\omega}) = e^{-j3\omega}$, $-\pi/4 \le \omega \le \pi/4$	L5	12M
$= 0, \pi/4 \le \omega \le \pi$ Using Hamming window with N = 7.		

Page 1 of 1

0.1	P.Code: 16ME316 R16 H.T.No.			24
Tin	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS) B.Tech. III Year I Semester Supplementary Examinations June MACHINE TOOLS (Mechanial Engineering) ae: 3 Hours	-2025		xs: 60
	(Answer all Five Units $5 \times 12 = 60$ Marks)	max.	Mail	25. 00
1	 a Explain basic elements in metal cutting with a neat sketch. b Discuss about machining of metals. 	CO1 CO1	L1 L2	6M 6M
	OR	COI		UIVI
2	Explain the formation of chip. Discuss the types of chips with neat sketches.	CO1	L2	12M
3	UNIT-II Draw a Merchant's circle diagram and derive expressions to show relationships among the different forces acting on the cutting tool and coefficient of friction.	CO2	L3	12M
	OR			
4	 a Explain the stress and strain acting on a chip. b In an orthogonal turning operation, cutting speed is 86Mm/min, cutting force 25kg, feed force 9kg, rake angle 10°, feed 0.3mm/rev and chip thickness 0.3mm. Determine the shear angle, workdone in shear and shear strain. 	CO2 CO2	L2 L3	6M 6M
	UNIT-III			
5	Explain lathe machine accessories with neat sketches.	CO3	L2	12M
6	What are the differences between a Turret and a Capstan lathe?	CO3	L2	12M
7	Explain with neat sketches any one of the following i) Radial drilling machine, ii) Sensitive drilling machine iii) Gang drilling machine.	CO4	L2	12M
8	Draw the block diagram of a shaper machine and explain briefly its various parts and operations performed.	CO4	L2	12M
9	With a neat sketch, explain construction and working of tool and cutter grinding machine.	CO5	L2	12M
10	OR Explain with the help of neat sketch 3-2-1 principle of location. *** END ***	CO4	L2	12M

à

×

Page 1 of 1

O.P.	Cod	le: 1	6ME326
------	-----	-------	--------

Time: 3 Hours

R16

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

B.Tech IV Year I Semester Supplementary Examinations June-2025

METROLOGY & MEASUREMENTS

(Mechanical Engineering)

Max. Marks: 60

12

(Answer all Five Units $5 \ge 12 = 60$ Marks)

UNIT-I

- 1 What are the types of fits between mating parts and explain with neat CO1 L1 12M sketch? OR
- 2 a Distinguish between 'Hole basis system' and 'Shaft basis system' of fits **CO1 L2 6M b** Define deviations. Explain types of deviations with the help of sketches. **CO1** L2 **6M** UNIT-II a State the principle of a micrometer. Explain with neat Sketch an outside 3 **CO2** L3 **6M** micrometer. **b** Estimate possible sources of errors in micrometers. **CO2** L3 **6M** OR a Briefly describe the construction, principle and operation of Talysurf CO2 4 L3 **6M** with a neat sketch. b Define the terms (i) Primary texture (ii) Secondary texture **CO2 L1 6M** UNIT-III a Evaluate (i) Outer diameter. (ii) Effective diameter. 5 **CO3** L3 **6M** (iii) Core diameter. (iv) Pitch diameter b Describe measurement of effective diameter with two wire method with CO3 **L3 6M** neat sketch. OR a With the help of an illustration, explain any four alignment tests on 6 **CO3** L3 **6M** lathe. **b** Discuss the factors influenced working accuracy of the machine tool. **CO3** L3 **6M**

UNIT-IV

- 7 a List out classification of tachometers? Elaborate DC tachometer CO4 L3 6M generator with neat sketch.
 b Explain working of Photo-electric tachometer. CO4 L2 6M
 - OR
- 8 a The most popular is the vibration seismic accelerator justify with CO4 L3 6M Principle of seismic instrument with neat sketch.
 b Explain working Principle of Accelerometer with neat sketch.
 CO4 L2 6M

UNIT-V

9 a Define pyrometer? With neat sketch elaborate total radiation pyrometer CO5 L2 6M
b What is formula for dead weight tester? Discuss the Dead Weight gauge CO5 L2 6M in detail.

· OR

- 10 a Discuss the U- tube Differential Manometer in detail. derive the CO5 L3 6M expression for pressure difference.
 - b List out very high pressure measuring instruments and draw with neat CO5 L3 6M sketch C type Bourdon tube.
 - *** END ***

Q.P.	Code: 16ME329 R16 H.T.No.			
	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS) B.Tech. IV Year I Semester Supplementary Examinations Jun METAL FORMING PROCESS		TUR	
Time	(Mechanical Engineering)	Max.	Mark	ks: 60
	(Answer all Five Units 5 x 12 = 60 Marks) UNIT-I			
1	Discuss in detail about recovery, recrystallisation and grain growth.	CO1	L6	12M
2	OR Develop an expression for three dimensional stress analysis.	CO1	L6	12M
3	Explain the principle and theory of rolling process with a schematic diagram.	CO2	L2	12M
4	OR Explain various types of Rolling defects that occur in rolling operation in detail.	CO2	L3	12M
5	Classify the extrusion process. Explain the mechanism of hot and cold extrusion processes.	CO3	L4	12M
6	OR Outline the working principle of forward and backward extrusion process with the proper sketches.	CO3	L2	12M
7	Define drawing and explain cup and tube drawing process with proper sketches.	CO4	L1	12M
8	OR Explain the mechanism of shearing in sheet metal operation with neat sketch.	CO4	L2	12M
9	UNIT-V Explain the injection moulding process in detail with suitable sketch. Mention its applications and limitations. OR	CO5	L2	12M
10	Discuss any two high energy rate forming methods with the proper sketches.	CO5	L6	12M

Ň,

「北京」をないの「おいののである」

_							V	* - 1 ¹¹ - 11	10 ⁻¹⁰		Ì
0).P	.Code: 161	ME325) R1	6	H.T.No.					
Tim	a .		RTH INST Tech IV Yea	ar I Semes Refrige	(AUTONC ter Supple eration &	MOUS)	Examina itioning	ations Jun	ne-2025		
1 1111	с.	0 110415		(Answer	all Five U	nits 5 x 12	= 60 M		/Iax. M	arks	60
1	8	Define the i).Refrigera	following t ation ii).Hea		U	NIT-I			C01	L1	6 M
	ł	• Explain the and T-S dia		f Bell-Cole	man cycle	air refriger	ration wi	ith P-v	C02	L2	6M
						OR					
2	a	What is the	e Necessity	of refrigera	tion				CO3	L1	6M
	b	Describe w	vith a neat sl	etch a Red	uced ambi	ent air refr	igeration	n system	C01	L1	6M
					UN	IIT-II					
3	a	What are th			r compress	ion refrige	ration s	ystem	CO3	L1	6M
	b	With a neat refrigeration	rigeration sy t sketch, exp n system.		orking prin	ciple of va	pour coi	npression	CO1	L5	6M
						OR					
4		60 bar and compression	valve. Deter	The worki e is no un mine (i). C	ng fluid der coolin .O.P of th	is just dr g of the e cycle (ii)	y at th liquid b	e end of efore the	C01	L5	12M
		Pressure	Temperat	Enthalpy(Entropy(-y-x				
		(Bar) 60	ure°C 295	Liquid 151.96	Vapour 293.29	Liquid 0.554	Vapo 1.03				
		25	261	56.32	322.58	0.226	1.24				
						T-III					
5	a	Advantages	of vapour a	bsorption r	efrigeration	n system o	ver vapo	our	CO2	L5	6M
	b	compression Define the te	erms nozzle	efficiency	and entrain	nment effic	ciency in	1 steam	CO 1	L1	6M
		jet refrigerat	tion system.	5			,			~	VITE
6		Differentiate	hetween w	anour aboor)R	nnraggio	'n	CO2	T 4	1337
v		refrigeration		apour ausor	puon and	vapour cor	1162220	11	CO3	L4	12M

UNIT-IV a What do you understand by the term psychrometry? 7 **CO1 L1 6M** b Define the following (i).Specific humidity (ii).Absolute Humidity **CO2** L1 **6M** OR a Define relative humidity, absolute humidity 8 **CO2 L1 6M b** Define saturated air, degree of saturation **CO1 L1 6M**

 $\hat{s}_{\hat{s}}$

	a Explain year round air conditioning system with sketch OR	CO1	L2	12M
10	a Why the ducts are used in an air conditioning system.b Which material is commonly used for making ducts in air condition systems?	cos ning cos	L1 L1	6M 6M

*** END ***

(2)

Studit with H.T.No. **O.P.Code:16ME324 R16** SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) **B.Tech. IV Year I Semester Supplementary Examinations June-2025 OPERATIONS RESEARCH** (Mechanical Engineering) **Time: 3 Hours** Max. Marks: 60 (Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I Solve the following LPP Maximize Z=3X1+5X2+4X3, 1 **CO1 L3 12M** Subjected To: $2X1+3X2 \le 8$, $2X2+5X3 \le 10$, $3X1+2X2+4X3 \le 15$ and $X1, X2, X3 \ge 0$ OR Solve the following by using Big-M method Maximize Z = 2X1+3X2+4X3, CO1 2 **L3 12M** Subjected to 3X1+X2+4X3 < 600, 2X1+4X2+2X3 > 480, 2X1+3X2+3X3 = 540 and X1, X2, X3 > 0**UNIT-II** Determine the basic Feasible solution to the following Transportation CO2 3 L5 **12M** problem using NWC, VCM and VAM. SUPPLY A B С D E Ρ 2 11 10 3 7 4 2 0 7 1 8 1 4 R 3 9 4 8 12 9 DEMAND 3 3 4 5 6 OR Solve the following transportation problem. CO2 L5 4 12M B C D **AVAILABLE** A 4 6 8 13 P 50 13 11 10 8 70 0 14 4 10 13 30 R S 9 11 13 8 50 REOUIRED 25 35 105 20 Determine the Shipping scheme by the Northwest corner Rule and Test the above solution for Optimality. UNIT-III Solve the following GAME, using the Dominance Principle 5 CO3 L3 12M Firm B Firm 5 4 6 10 6 7 8 5 9 10 8 9 11 10 9 4 6 10 6 4

OR

- 6 Consider a self-service store with one cashier. Assume Poisson arrivals and CO3 L3 12M exponential service times. Suppose that 9 customers arrive on the average every 5 minutes and the cashier can serve 10 in 5 minutes, Find
 - a) Average number of customers queuing for service
 - b) Probability of having more than 10 customers in the system.
 - c) Probability that a customer hasto queue for more than 2 minutes

UNIT-IV

7 Determine the sequence for the jobs and the total elapsed time.

	A	B	C	D	E	F	G	H	I
Machine1	4	7	6	11	8	10	9	7	6
Machine2	8	10	9	6	5	11	5	10	13

CO4 L5 12M

0	R

8 A project has the following schedule. Construct PERT network and compute CO4 L6 12M the total float for each activity. Find critical path and its duration .Also calculate Total Float, Free Float

Activity	1-2	1-3	2-4	3-4	3-5	4-9	5-6
Time in	4	1	1	1	6	5	4
weeks							
Activity	5-7	6-8	7-8	8-9	8-10	9-10	
Time in	8	1	2	1	8	7	
weeks							
						-	

UNIT-V

9 Bright Metals limited is considering two different investment proposals A CO5 L6 12M &B. The details are as listed below. Suggest the best proposal on basis of NPV method .considering the future discounted at 12%.Also find out IRR of two proposals.

		Proposal A	Proposal B
Investment Cost		Rs. 9500	Rs.20000
	Year 1	4000	8000
Estimated Income	Year 2	4000	8000
	Year 3	4500	12000

OR

- 10 aExplain the Bellman's principle of optimalityCO5
 - b Describe the various types of replacement situations and Explain about CO5 L1 6M group replacement.

*** END ***

L2

6M

			Lightin	to an energy of							\cap
Q.	Р.С	Code: 16ME314	R16	H.T.No.							$\Box^{()}$
		SIDDHARTH INSTITU B.Tech. III Year I S DES	(AUT) emester Si	ONOMOUS)	Exami	natio				TUR	
Tir	ne	: 3 Hours	(Mechai	nical Engineerin	g)			N	lax.	Marl	ks: 60
		(A	nswer all Fi	ve Units 5 x 12	= 60]	Mark	s)				
1		How do you classify the ma Explain the general desi element.	•	n? Explain.	gning	a m	achir		201 201	L1 L2	6M 6M
2	0	Darius on ourreagion for th	a imma at atm	OR	to o fo	11:	laad	6	101	12	
2		Derive an expression for th An unknown weight falls t the lower end of a vertical maximum instantaneous en corresponding stress and th kN/mm ² .	hrough 10 r bar 3 m lor xtension is	nm on a collar in ng and 600 mm ² known to be 2	rigidly ² in se mm,	attac ction what	ched t . If th is th	io C lie lie	201 201	L3 L3	6M 6M
3		Explain stress concentration	on in detail		nethod	s to	reduc	e C	202	L2	12M
		stress concentration in mac	hine membe								
4	a	Explain the following terms (i)Theoretical stress concentra (ii) fatigue stress concentra (iii) Notch sensitivity.	tration facto	OR or,				C	202	L2	6M
	b	A machine component is from 40 N/mm ² to 100 N machine component is 270 stress of the material are factor of safety using: (i) Goodman line.	/mm ² . The N/mm ² . Th 600 and 40	corrected endur ne ultimate stres 00 N/mm ² respe	ance sand	limit yielo y. Fi	of th 1 poir nd th	e nt e	02	L3	6M
5	a	Explain briefly the method	of riveting.	UNIT-III				С	03	L2	6M
	b	Double riveted double cov with 25 mm diameter rivets are : $\sigma t = 120$ MPa; $\tau = 100$ joint, taking the strength of that of single shear.	s at 100 mn 0 MPa; σc=	n pitch. The pe 150 MPa Find	rmissi the e	ble s fficie	tresse	s	03	L3	6M
6		Determine the length of the and 15 mm thick to be weld i). A single transverse weld; joint is subjected to variable	ed to anothe ii). Double	r a plate of size er plate by mean	s of			С	03	L3	12M
			A C								

UNIT-IV

7	a b	What are the applications of a cotter joint? Design a knuckle joint for a tie rod of a circular section to sustain a maximum pull of 70 kN. The ultimate strength of the material of the rod against tearing is 420 MPa. The ultimate tensile and shearing strength of the pin material are 510 MPa and 396 MPa respectively.Determine the tie rod section and pin section. Take factor of safety = 6. OR	CO4 CO4	L2 L3	6M 6M
8	a b	How the shaft is designed when it is subjected to twisting moment only? A shaft made of mild steel is required to transmit 100 kW at 300 r.p.m. The supported length of the shaft is 3 meters. It carries two pulleys each weighing 1500 N supported at a distance of 1metre from the ends espectively. Assuming the safe value of stress, determine the diameter of the shaft.	CO4 CO4	L3 L3	6M 6M
9		What is a key? State its function with neat sketch. A 45 mm diameter shaft is made of steel with yield strength of 400 MPa. A parallel key of size 14 mm wide and 9 mm thick made of steel with yield strength of 340 MPa is to be used. Find the required length of key, if the shaft is loaded to transmit the maximum permissible torque. Use maximum shear stress theory and assume a factor of safety of 2. OR	CO5 CO5	L2 L3	6M 6M
10		 Design a bushed-pin type of flexible coupling to connect a pump shaft to a motor shaft transmitting 32 kW at 960 r.p.m. The overall torque is 20 percent more than mean torque. The material properties are as follows : (a) The allowable shear and crushing stress for shaft and key material is 40 MPa and 80 MPa respectively. (b) The allowable shear stress for cast iron is 15 MPa. (c) The allowable bearing pressure for rubber bush is 0.8 N/mm2. (d) The material of the pin is same as that of shaft and key. 	CO5	L3	12M

				\sim			
0.P.0	Code:16EE207 R16 H.T.No.			_9			
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) B.Tech II Year I Semester Supplementary Examinations June-2025 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING (Common to AGE, CSE, CSIT) Time: 3 Hours *Note: Answer PART-A from pages 2 to 20 and PART-B from 21 to 39.							
	(Answer all Six Units 6 X 10 = 60 Marks) PART-A UNIT-I						
1 a	a State and explain Ohm's law.	CO1	L2	5M			
ł	Explain in detail about passive elements.	CO1	L2	5M			
	OR			5171			
2 a		CO1	та	7 3 5			
b			L2	5M			
	UNIT-II	CO1	L2	5M			
2							
	State Thevenins theorem.	CO2	L2	2M			
b	The concern and the concern across 74D for the circuit shown in	CO2	L3	8M			
	below 50N						
4	The given ABCD parameters are A=2, B=0.9, C=1.2, D=0.5. Find Y	CO2	L3	10M			
	parameters.						

UNIT-III

5	a	Discuss about the principle of operation of DC motors	CO3	L2	5M
	b	Calculate the value of torque established by the armature of a 4-pole DC	CO3	L3	5M
		motor having 774 conductors, 2 paths in parallel, 24mwb flux per pole			
		when the total armature current is 50A.			

OR

6	a Explain principle of operation of transformer.	CO3	L2	5M
	b Derive EMF equation of a transformer.	CO3	L3	5M

85

PART-B

UNIT-IV

7	а	Distinguish between conductors, semiconductors and insulators.	CO 4	L2	5M
	b	What is Doping? Describe P-and N-type semiconductors?	CO 4	L1	5M
		OR			
8	а	With neat diagram, explain the working principle of Full Wave Rectifier.	CO 4	L3	5 M
		Draw its input and Output waveforms.			
	b	Discuss Zener Diode breakdown mechanism. Draw the Zener diode in its	CO4	L2	5M
		reverse bias and explain its Volt-Ampere characteristics.			
		UNIT-V			
9	a	Describe in detail the working of an NPN bipolar junction transistor. Why	CO5	L1	5M
		it is called Bipolar?			
	b	Explain with the help of diagrams various types of circuit configurations,	CO5	L2	5M
		which can be obtained from a bipolar junction transistor.			
		OR			
10	a	Describe the voltage divider bias network of BJT with a diagram and	CO5	L1	5M
		equations.			
	b	Explain in detail the theory of operation of n-channel JFET.		L2	5M
		UNIT-VI			
11	а	What is an oscillator and how the oscillators are classified? Write	CO6	L1	5M
		Barkhausen criteria for oscillator operation.			
	b	With neat diagram, explain the operation of LC tuned transistor oscillator.	CO6	L2	5M
		OR			
12	а	Discuss the Characteritics of an ideal operational amplifier.	CO6	L2	5M
	b	Draw an inverting amplifier of operational amplifier and derive its closed	CO6	L1	5M
		loop gain.			

O.P.Code: 16HS612

1

2

3

4

5

6

7

H.T.No. **R16** SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY .: PUTTUR (AUTONOMOUS) B.Tech. II Year I Semester Supplementary Examinations June-2025 ENGINEERING MATHEMATICS-III (Common to all) Max. Marks: 60 Time: 3 Hours (Answer all Five Units $5 \times 12 = 60$ Marks) **UNIT-I 6M** function CO1 L3 that the 'p' such a Determine $f(z) = \frac{1}{2} \log(x^2 + y^2) + i \tan^{-1}\left(\frac{px}{y}\right)$ be an analytic function. L5 **6M CO1 b** Evaluate $\int \frac{\log z dz}{(z-1)^3}$ where $c: |z-1| = \frac{1}{2}$ using cauchy's integral formula. OR L5 **12M CO1** Evaluate $\int_{-1}^{1+i} (x^2 - iy) dz$ along the paths $(i) y = x (ii) y = x^2$. **UNIT-II** Determine the poles of the function $f(z) = \frac{z^2}{(z-1)^2(z+2)}$ and the **CO2 L3 6M** residues at each pole. **b** Find the bilinear transformation that maps the points $(\infty, i, 0)$ into the **CO2** L3 6M points $(0, i, \infty)$ OR L5 **12M CO2** Evaluate $\int_{0}^{\pi} \frac{1}{a+b\cos\theta} d\theta = \frac{\pi}{\sqrt{a^2-b^2}}, a > b > 0.$ UNIT-III Find a real root of the equation $xe^x - \cos x = 0$ using Newton –Raphson **L3 12M CO3** Method. OR From the following table values of x and $y = \tan x$ interpolate values of **12M** L3 **CO3** *y* when x=0.12 and x=0.28. 0.30 0.25 0.20 0.15 0.10 x 0.3093 0.2553 0.2027 0.1511 0.1003 y UNIT-IV Fit a second degree polynomial to the following data by the method of **CO4** L4 **12M** least squares.

x	0	1	2	3	4
v	1	1.8	1.3	2.5	6.3
-				0R	

12M CO4 L5

8

Evaluate $\int_{0}^{1} \frac{1}{1+x} dx$

By trapezoidal rule and simpson's $\frac{1}{3}$ rule. (i)

(ii) Using simpson's $\frac{3}{8}$ rule and compare the result with actual value.

9	UNIT-V Using Taylor's series method find an approximate value of y at x=0.2 for the D.E $y^1 - 2y = 3e^x$, $y(0) = 0$.	CO5	L3	12M
10	compare the numerical solution obtained with exact solution. OR Using R-K method of 4 th order find $y(0.1)$ and $y(0.2)$ given that $\frac{dy}{dx} = 1 + xy, y(0) = 2.$	C05	L3	12M

H.T.No. **R16 O.P.Code: 16HS602** SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) B.Tech. I Year I Semester Supplementary Examinations June-2025 **ENGINEERING MATHEMATICS-I** (Common to all) Max. Marks: 60 **Time: 3 Hours** (Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I 1 a Solve $(1 - x^2) \frac{dy}{dx} + xy = a \cdot x$. L1 **6M CO1 b** Solve $(D^3 - 1)y = e^x + \sin 3x + 2$. **CO1** L2 **6M** OR a Find the orthogonal trajectories of the family of curves $r^n = a^n \cos \theta$. **L4 6M CO1** 2 **b** A body is originally at $80^{\circ}c$ and cools down to $60^{\circ}c$ in 20 min. If the **L3 CO1 6M** temperature of the air is $40^{\circ}c$, then find the temperature of the body after 40 min. UNIT-II Show that $\sin^{-1} x = x + \frac{x^3}{3!} + \frac{1^2 \cdot 3^2}{5!} x^5 + \frac{1^2 \cdot 3^2 \cdot 5^2}{7!} x^7 + \dots$ **L3 6M CO2** 3 **CO2** L4 **6M** Show that $\log(1 + e^x) = \log 2 + \frac{x}{2} + \frac{x^2}{8} - \frac{x^4}{102} + \dots$ OR **CO2** L1**6M** Find the radius of curvature at the origin of the curve $y^2 = \frac{x^2(a+x)}{a-x}$. b Find the radius of curvature at the origin for the curve L2 **6M CO2** $v^{4} + x^{3} + a(x^{2} + v^{2}) - a^{2}v = 0.$ **UNIT-III** L1 **6M CO3 a** Evaluate $\int_{0}^{1} \int_{0}^{x^{2}} e^{y^{2}/x} dy dx$. **L2 6M CO3** Evaluate $\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}(x^2+y^2+z^2)\,dx\,dy\,dz\,.$ OR integral by changing the order of integration CO3 **L3 6M** a Evaluate the 6 $\int_{0}^{1} \int_{0}^{\sqrt{2-x^{2}}} \frac{x}{\sqrt{x^{2}+y^{2}}} dy dx.$ b Evaluate the following integral by changing to polar coordinates CO3 **6M L4** $\int\int\int e^{-(x^2+y^2)}dxdy\,.$

UNIT-IV			18
a Find the Laplace transform of $\left(\sqrt{t} + \frac{1}{\sqrt{t}}\right)^3$.	CO4	L1	6M
b State and prove first shifting theorem.	CO4	L2	6M
OR			
Find Laplace Transform of periodic function $f(t)$ with period T, where	CO4	L4	12M
$f(t) = \begin{cases} \frac{4Et}{T} - E & 0 \le t \le \frac{T}{2} \\ 3E - \frac{4E}{T}t, & \frac{T}{2} \le t \le T \end{cases}$			
UNIT-V			
^a Find the Inverse Laplace transform of $\frac{5s-2}{s^2(s+2)(s-1)}$.	CO5	L1	6M
b Find $L^{-1}\left\{\frac{2s-5}{4s^2+25}+\frac{4s-18}{9-s^2}\right\}$ by using linear property.	CO5	L2	6M
OR			
Using Laplace Transform solve $(D^2 + n^2)x = a \sin(nt + 2)$ when $x = Dx = 0$ at $t = 0$.	CO5	L4	12M
	Find the Laplace transform of $\left(\sqrt{t} + \frac{1}{\sqrt{t}}\right)$. b State and prove first shifting theorem. OR Find Laplace Transform of periodic function $f(t)$ with period T, where $f(t) = \begin{cases} \frac{4Et}{T} - E & 0 \le t \le \frac{T}{2} \\ 3E - \frac{4E}{T}t, & \frac{T}{2} \le t \le T \end{cases}$ a Find the Inverse Laplace transform of $\frac{5s - 2}{s^2(s + 2)(s - 1)}$. b Find $L^{-1}\left\{\frac{2s - 5}{4s^2 + 25} + \frac{4s - 18}{9 - s^2}\right\}$ by using linear property. OR Using Laplace Transform solve $(D^2 + n^2)x = a \sin(nt + 2)$ when	Find the Laplace transform of $\left(\sqrt{t} + \frac{1}{\sqrt{t}}\right)$. b State and prove first shifting theorem. CO4 OR Find Laplace Transform of periodic function $f(t)$ with period T, where $f(t) = \begin{cases} \frac{4Et}{T} - E & 0 \le t \le \frac{T}{2} \\ 3E - \frac{4E}{T}t, & \frac{T}{2} \le t \le T \end{cases}$ a Find the Inverse Laplace transform of $\frac{5s-2}{s^2(s+2)(s-1)}$. b Find $L^{-1}\left\{\frac{2s-5}{4s^2+25} + \frac{4s-18}{9-s^2}\right\}$ by using linear property. CO5 OR Using Laplace Transform solve $(D^2 + n^2)x = a \sin(nt + 2)$ when CO5	Find the Laplace transform of $\left(\sqrt{t} + \frac{1}{\sqrt{t}}\right)$. b State and prove first shifting theorem. CO4 L2 OR Find Laplace Transform of periodic function $f(t)$ with period T, where $CO4 L4$ $f(t) = \begin{cases} \frac{4Et}{T} - E & 0 \le t \le \frac{T}{2} \\ 3E - \frac{4E}{T}t, & \frac{T}{2} \le t \le T \end{cases}$ a Find the Inverse Laplace transform of $\frac{5s - 2}{s^2(s + 2)(s - 1)}$. b Find $L^{-1}\left\{\frac{2s - 5}{4s^2 + 25} + \frac{4s - 18}{9 - s^2}\right\}$ by using linear property. CO5 L1 OR Using Laplace Transform solve $(D^2 + n^2)x = a \sin(nt + 2)$ when CO5 L4

R16 H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech III Year I Semester Supplementary Examinations June-2025 FORMAL LAUNGUAGES AND AUTOMATA THEORY (Common to CSE & CSIT)

Time: 3 Hours

1

(Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I Max. Marks: 60

Convert the following NFA with ε moves to DFA without ε moves.

OR

2 Convert the following Mealy machine into its equivalent Moore CO1 L2 12M machine.

Present State	I/P=0		[/P=]		
	Next State	O/P	Next State	O/P	
→ A	С	0	В	0	
В	A	1	D	0	
С	В	1	A	1	
D	D	1	C	0	

3 a Construct an equivalent FA for the given regular expression CO2 L1 6M (0+1)*(00+11)(0+1)*

b State Arden's theorem and construct the regular expression for the CO2 L1 6M following FA using Arden's theorem.

OR

4a List out the identities of Regular expression.CO2L16Mb From the identities of RE, prove that
i) $10+(1010)*[^+(1010)*]=10+(1010)*$ CO2L26M

ii)(0+011*)+(0+011*)(01+0100*)(01+0100*)*=01*(010*)*

UNIT-III

- a Explain about derivation and parse trees? Construct the string CO3 L2 6M 0100110 from the Leftmost and Rightmost derivation.
 S->0S/1AA
 A->0/1A/0B
 B->1/0BB
 - b Find the parse tree for generating the string 11001010 from the given CO3 L2 6M grammar.
 S->1B/0A

A->1/1S/0AA B->0/0S/1BB

CO1 L2 12M

	OR			
6	a Explain Left recursion and Left factoring.	CO3	L3	6M
	b Perform left factor from the grammar A->abB/aB/cdg/cdeB/cdfB.	CO3	L3	6M
	UNIT-IV			
7	a Construct a PDA which recognizes all strings that contain equal number of 0's and 1's.	CO4	L2	6M
	b A PDA is more powerful than a finite automaton. Justify this statement.	CO4	L2	6M
	OR			
8	Construct PDA from the following Grammar	CO4	L2	12M
	S->0BB			
	B->0S/1S/0			
	Show an ID for the string 010000 is generated for PDA.			
	UNIT-V			
9	Construct a Turing machine for Language L=anbn,where n>0.	CO5	L2	12M
	OR			
10	Explain conversion of regular Expression to TM with example.	CO5	L3	12M
	*** END ***			